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Upper bounds on Tc for many-body, ferromagnetic, 
Ising systems 
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Department of Physics, Beaver Campus, The Pennsylvania State University, Monaca, PA 
15061, USA 

Received 22 October 1985 

Abstract. A method used previously to obtain upper bounds on the critical temperature 
T, for ferromagnetic Ising systems with pair interactions is generalised to treat systems 
with odd or even many-body interactions. The results are compared to recent work of 
Horiguchi and Morita who, using a different method, found bounds on T, for systems 
with even many-body interactions. An interesting feature of the method presented here 
involves the new use of some correlation inequalities. 

1. Introduction 

Very recently Horiguchi and Morita (1985b) presented a method which establishes 
upper bounds on the critical temperature (hereafter T,) of ferromagnetic Ising spin 
systems with even-spin interactions. We have recently presented (Monroe 1985) a 
method which we used to establish similar bounds on T, for ferromagnetic Ising spin 
systems with only two-body interactions with the emphasis on situations with more 
than just nearest-neighbour interactions present. Here we extend this method to 
ferromagnetic Ising spin systems with many-body interactions where by many-body 
we mean three or more spins. Our method can be applied to systems with either 
even-body or odd-body interactions present. Throughout this paper T, will be defined 
as the temperature above which the spontaneous magnetisation is zero. 

In particular we first look at a system on a square lattice with nearest-neighbour 
pair interactions and four-body interactions on each elementary square of the lattice. 
This system was considered by Horiguchi and Morita (1985a, b)  and we compare our 
bounds to theirs. As an example of a system with a many-body interaction having an 
odd number of spins interacting we look at a triangular lattice system with a three-body 
interaction on each elementary triangle of the lattice. This system was solved exactly 
by Baxter and Wu (1973). 

The method we use here varies in only one essential aspect from our earlier analysis 
of pair interaction systems. This aspect involves a type of correlation inequality similar 
to that used by Messager and Miracle-Sole (1977). We emphasise the new features 
necessary for analysis of the many-body interaction systems and for more details 
concerning the general aspects we refer the reader to Monroe (1985). In 9 2 we 
introduce the necessary notation and establish our bounds for the two systems men- 
tioned above. In the proof of these T, bounds we assume certain correlation inequalities 
which we then prove in 9 3. Section 4 consists of a short conclusion. 
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3098 J L Monroe 

2. T, bounds 

We begin by considering the square lattice with periodic boundary conditions, a spin 
variable a on each site with a = * l ,  and Hamiltonian 

H = - J 2  C ria, - 34  1 c + j a j a k a /  - h (T, (2.1) 
where the first sum is over all nearest-neighbour pairs, the second sum is over all 
four-body interactions where the four spins involved form an elementary square of 
the lattice and the third sum is over all sites of the system. J2 ,  J4 and h are all greater 
than or equal to zero. We pick a site as the zeroth site and label the sites around it 
as shown in figure 1 .  Later we will need a concise notation to represent specific 
four-body interactions. The Greek symbols in figure 1 represent these, for example a 
represents the interaction involving a,, al, a2 and a 3 .  

The thermal average of some function of the a, f(a), is 

(f(a)) = c f(m) exp(-pH)( c exp( -PHI )  (2.2) 

where the summations in both numerator and denominator are over all configurations 
of the system and where p = 1/  kt. The method for obtaining the T, bound requires 
that we set various interaction strengths equal to zero. We denote any such deleted 
interactions by a subscript on the brackets representing the thermal average, for 
example, ( f ( ~ ) ) 0 1 , 0 3 , ~  is the thermal average of f(a) for a system where the pair 
interactions between sites 0 and 1 ,  and 0 and 3, as well as the four-body interaction 
CY have been deleted. 

Figure 1. The square lattice with sites and four-body interactions labelled. 

Following our earlier paper we can delete the pair interactions involving the zeroth 
site to obtain 

(2.3) 
(a00)07,05,03,01 T2(a7)07,05,03,01 T2(m5)05,03,01 + T2(m3)03,01 T2(a1)01 + + +- 

B5 B3 Bl B3 B 1  Bl 
( u o ) =  

7 5 3 1 B 7 B 5 B 3 B l  

where 

Bl = 1 + T2(a0oa1),, 
B7 = + T2(u0u7)07,05,03,01 B5 = + T2(a0m5)05,03,01 B3 = + T2(a0m3)03,01 

T2 = tanh(pJz). 
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Let A denote the last four terms of (2.3). Now we take ((+0)07,05,03,01 and delete the 
four-body interaction terms involving the zeroth site to obtain 

and where to reduce the number of subscripts on the thermal average brackets we 
have used a prime to indicate deletion of the four pair interactions involving the zeroth 
site. 

Now equation (2.4) can easily be turned into an upper bound on (ao) by setting 
each of the E, E6-E1, equal to one. That each E 2 1 is a direct consequence of the 
first Griffiths-Kelly-Sherman inequality (hereafter referred to as GKS I ) ;  see Griffiths 
(1967a) and Kelly and Sherman (1968). By the second Griffiths-Kelly-Sherman 
inequality (hereafter referred to as GKS 1 1 ) ,  see Griffiths (1967b) and Kelly and Sherman 
(1968), we know that adding ferromagnetic interactions to a system does not decrease 
the thermal average of any product of a. Therefore we have 

((+O)< T i  T 2 ( a 7 ) +  T2(a5)+ T2(a3)+ T2(ul)f T4(a7a8(+l)f T4(a5a6a7) 

+ T4(a3a4a5)+ T4(a1a2(+3). (2.5) 

The inequality (2.5) is true for any size system including an infinite system. If we now 
let h + 0 and use the translational and rotational symmetries of the system, we have 

(CO) 4 T2((+0) + 4 T 4 ( r i  (2.6) 

The steps to this point are of the same basic type as in Monroe (1985). The new 
feature is the thermal average (a1a2a3) which does not appear if only pair interactions 
are present. We can reduce this three-site thermal average to a single site by using the 
inequality 

( ~ l ) ~  ((+1(+2a3). (2.7) 
This inequality and other similar inequalities needed can be established by the duplicate 
variable method of proving correlation inequalities; see Ellis and Monroe (1979, Ellis 
et al (1976) and Sylvester (1976). Messager and Miracle-Sole (1977) have used this 
method to establish some of the inequalities needed here. We will defer to Q 3 the 
proofs of all inequalities similar to (2.7) needed for our bounds on T,. Using (2.7) 
along with the translational symmetry of the system we have 

(ma) (4 T2 $- 4 T 4 ) ( a o ) .  (2.8) 
If the term in parentheses is less than one then (ao) = 0 for the infinite system with 
h + 0 and hence we have no phase transition. We plot in figure 2 the bounds on T, 
found from (2.8). 
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I 
I 1 

0 2 4 6 
Jz'Jn 

Figure 2. Upper bounds for KT,/J, for the square lattice system. --- (---): result 
from Horiguchi and Morita 1985a (1985b). -.-: results from (2.8); -: result from 
(2.11). 

The bound given by (2.8) can be improved by going back to the identity (2.4), and 
changing our approach to (2.8) in two ways. First, setting each of the B in (2.4) equal 
to one is equivalent to setting each of the thermal averages in each expression for a 
particular B equal to zero, Clearly these thermal averages are greater than zero and 
a better lower bound can be established for them. This was done for the pair interaction 
case but will not be done here. Rather we will emphasise a second basic way of 
improving the inequality. It consists of continuing with the process of deleting interac- 
tions beyond the level arrived at in (2.4). 

Specifically we take the thermal averages in the numerators of the last eight terms 
of (2.4) and begin deleting all interactions involving one of the sites in the thermal 
average, for example, starting with ( a,)ol we delete the remaining three-pair interaction 
terms and the four four-body interactions involving spin u1. This gives, setting all B 
terms equal to one, 

((+l)Ol  T2((+2)12,Ol + T2('10)110,12,01 + TZ('8)18,110,12,01 + T4((+0(+2(+3)k 
+ T4(w2u9u10)~a + T4('8(+10(+11)bea + T4('0(+7(+8)kpea + 'T (2.9) 

where the prime on the thermal average indicates that the four-pair interactions are 
deleted. With a thermal average involving three sites such as (u~(+~(+~)~ we have 

((+l(+2(+3)& T2((+3);2,a + T2((+2(+3(+10)~10,12,0 + T2((+8a2u~~~8,110,12,a + T4('3(+9(+10)~,...,a 
+ T4((+2(T3u8(+10g11)~,~ ,.... a + T4(a0u2a3u7(+8)b,p,~ ,._., a + r((+2'3)6 ...., a (2.10) 
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where all sites and interactions are labelled as in figure 1. These expressions can now 
be used to bound the thermal averages in the last eight terms of (2.4). 

Placing these terms into (2.4) results in an improved bound on T,.  One should 
notice that we now need an expanded set of correlation inequalities since we now 
have some thermal averages containing the product of five spin variables. We postpone, 
as with (2.7), the proof of these inequalities until § 3. We gain a further improvement 
if we take the thermal averages on the right-hand side of (2.9) and (2.10) and the other 
thermal averages generated from the six other terms of (2.4) and delete all interactions 
about one site in each of these terms. We then think of this as a third generation 
bound. There is in principle nothing to stop us from continuing in this manner although, 
as seen already in (2.9) and (2.10), to keep track of the deleted interactions becomes 
a very tedious task. For this reason we stop at the level of the third generation inequality 
which is 

(go) S (36 T: + 122 T: T4 + 93 T2 T:  + 19 Ti ) (  a,,). (2.11) 

If as in (2.8) the term in parentheses is less than one then there is no spontaneous 
magnetisation. 

The bound given by (2.11) is plotted in figure 2 along with the results from (2.8) 
and from Horiguchi and Morita (1985a, b). Comparison of the results depends on the 
ratio of J2 to J4. In Horiguchi and Morita (1985b), for J2/  J4 close to zero their results 
are significantly better since they have as J2/  J 4 +  0 that Tc+ 0 which we are not able 
to establish. However for intermediate values, for example J2/  5 4  = 1 and J2/ J4 = 5 ,  
they obtain kT,/J4S 6.73 and k T c / J 4 s  20.03, respectively, while from (2.1 1) one has 
kT,/ J4 S 6.41 and kTc/ J 4 s  19.67, respectively. Eventually for large enough values of 
J 2 / J 4  the results of Horiguchi and Morita (1985b) will again become better. This is 
because when J2/ J4+ CO we have only the pair interaction system and Horiguchi and 
Morita use the exact results known for this system. This particular aspect of their 
method will be discussed in § 4. 

We now consider as a second example of our method a triangular lattice system 
with three-body interactions J3 on each elementary triangle of the lattice and an external 
magnetic field. To have the symmetry necessary for the proof of the correlation 
inequalities we take the set of sites making up the system to be hexagonal in shape as 
in figure 3. We take the system to have free boundary conditions. We let this set of 

Figure 3. The triangle lattice with sites and three-body interactions labelled. 
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sites become infinite and then let the external magnetic field go to zero. We label the 
sites as shown in figure 3 and as before use Greek letters to represent specific three-body 
interactions. 

Deleting interactions around the zeroth site we have 

(2.12) 

where B, = 1 + T3((+0(+1~~6),,,.~, B, = 1 + T3((+O(+5(+6)E.,.a, etc, and T3 = tanh(PJ3). The 
symbol T is defined as before. Again to obtain a bound we set each B = 1 .  NOW a 
new feature has arisen in that in the numerators of the last six terms of (2.12) we have 
thermal averages of a product of an even number of spins. Such thermal averages 
cannot be bounded by the methods of 4 3.  However, if we take the thermal averages 
and delete interactions involving one of the pair of sites in each average we generate 
a second generation bound. The thermal averages in this set of deletions all contain 
an odd number of spins: for example, starting with the term ((+IuZ)u we have 

((+1(+2)0 7 ( ( + 2 ) w  ... a + T3((+9)u ... U + T3(a208a9)~...a + T3((T2(77(+8)4...a 

+ T3((T2(T6(+7)8pu + T3(a2cr600)pu (2.13) 

where as before the B have been set equal to one. The thermal averages involving 
three spins can be bounded from above by single-spin thermal averages as was done 
for the square lattice systems. However, because periodic boundary conditions are 
not used each single-spin thermal average is not equal to every other single-spin thermal 
average. However, as a direct consequence of the set of inequalities in 0 3 we show 

( g o )  3 (ai) (2.14) 

for some subset of sites i which includes all the sites of our one-site thermal averages. 
We then have 

(CO) 25 T:((+o) (2.15) 

and we thus have a bound of KTcIJ3c4.93. Baxter and Wu's exact solution gives 
KTc/J3 = 2.27. The bound can be improved by going to a third generation inequality 
or higher. However, since this model has been solved exactly we have not done so. 
Our intent in considering the above model was to show how the method can be applied 
to a spin system with odd-body ferromagnetic interactions in contrast to the Horiguchi 
and Morita method. 

3. Correlation inequalities 

The correlation inequalities we used in § 2 are related to a set of inequalities established 
by Messager and Miracle-Sole (1977). Their proof as well as ours is based on the 
duplicate variable method (see Ellis and Monroe 1975, Sylvester 1976). Since the 
symmetry properties of the individual systems are crucial we must prove the necessary 
inequalities for each system separately. We begin with the square lattice. 
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For simplicity we consider a four site by four site system. The method works for 
any 2 n  by 2n site system. We divide the system into two halves either horizontally or 
vertically and label the sites as shown in figure 4. Note that for every site i there is a 
site E For any set D of lattice sites all on the unbarred half of the system we write 

Then U D  is the product of the spin variables found by reflecting D about the vertical 
broken line in figure 4. 

Theorem 1. For a system with Hamiltonian (2.1) on a square lattice with periodic 
boundary conditions 

( U A U B )  ( U A U 8 ) .  (3.2) 

Proof: Rewriting (3.2) we need to establish that 

( U A ( ( + B  -g.8))20. (3.3) 

t ,  = +(U,  + U T )  (3.4) 

Define for each site i 

qt = %(+, - U?) .  

We can re-express the Hamiltonian in terms of the t and q and in doing so the 
Hamiltonian becomes a polynomial in the t and q with negative coefficients and some 
constant terms. In the evaluation of the thermal average we have the factor exp(-PH). 
The exponent of this factor is a polynomial involving terms of t and q with positive 
coefficients and constant terms. This is also true of the term cA(uB - 0 8 )  when written 
in terms of the t and q. We expand all the exponential terms involving the t and q 
and factor the expression collecting terms by site. Now the problem is reduced to 
showing 

tz,q,” 2 0. (3.5) 

Figure 4. A square lattice system with sites labelled for the correlation inequality proof. 
Some sites are shown twice so that one can more easily see the interactions due to the 
periodic boundary conditions. 
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This summation vanishes by symmetry unless both rn and n are even in which case 
the summation is clearly positive. Hence we have the inequality (3.2) since it is just 
made up of sums of products of the form (3.5), all of which are non-negative. 

Now we consider the specific inequalities used in 5 2 such as (2.7). For (2.7) split the 
system into barred and unbarred halves by a horizontal line between u2 and w3 in 
figure 1. Then we have ut = ul, u2 = u2 and u3 = ~2 and therefore by the theorem and 
uf = 1 we have 

( ~ 1 ) = ( ~ I ~ 2 ~ 2 ) s ( ~ 1 ~ 2 ~ ~ ) = ( ~ 1 ~ 2 ~ 3 ) ~  (3.6) 

When we have an expression involving five spins such as (u2u3u8uloul1) in (2.10) then 
we may have to use the process twice. First again divide the system between sites 2 
and 3 in figure 1, then 

( u 8 ( + 1 o ~ l l )  = ( ~ 2 u 2 ~ 8 ~ 1 o u I l )  3 ( ~ , ~ I ~ 8 ~ l O ~ , l )  = ( ~ 2 ( + 3 g 8 ~ I O u I l ) .  (3.7) 
Now divide the system vertically into two halves along a line between ul0 and gI1 so 
that un = ul0 then 

( U s )  = ~ ~ 8 ~ 1 I ~ l l ~ ~ ~ ~ * ~ , l ~ i i ~ = ~ ~ x ~ 1 1 ~ 1 o ~ .  (3 .8)  
All odd-body inequalities contained in the establishment of the bounds on T, for the 
square lattice can be reduced to a single-spin thermal average. Because of the periodic 
boundary conditions each single-spin thermal average is equivalent to any other so 
we can reduce everything to (uo). 

For the triangular system we can use the same approach except for some minor 
modifications due to the different symmetry and the different boundary conditions 
used for this case. We therefore only mention the necessary modifications. For 
simplicity we consider the 19-site system in figure 5. We divide the system into two 
halves along any row of sites. Label the sites on the larger half of the system as 
unbarred sites and their reflection is then the barred sites. An example of this is shown 
in figure 5. 

Defining t and q as in equation (3.4) we have, when re-expressing the Hamiltonian 
and u,(a,-ua,), that all terms involving products of t and q have non-negative 
coefficients. Collecting terms site by site and having (3.5) we have the inequality (3.2) 

/ 

I 
U? 0" U-=Q 

Ob Q"3 /* 0.- * a  
/ 

/ 

e 
U .  0 . C  *O,L 

Figure 5. A triangular lattice system with sites labelled for the correlation inequality proof. 
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for the triangular lattice system. This inequality we use in two different ways in 
obtaining the bounds on T, such as that following (2.15).  First we reduce any three-site 
thermal average to a single-site thermal average in the same manner as was done for 
the square lattice. However, because of the change in boundary conditions we do not 
have the equivalency of each single-site thermal average. We can, however, using 
inequality (3 .2) ,  show that (ao) 2 (ai) for i such that it is a reflection of a, about some 
allowed division of our system into halves. An example of such a site is i = 7.  Then 
by the labelling of the sites in figure 5 we have 

(3.9) 

When reducing our three-site thermal averages in the second generation bound of 
(2.15) only the sites i = 7,  9, 11, 13, 15 and 17 appear and these can all be bounded 
by (ao) using the above method. 

((To) = ( ~ o ~ o c + o )  3 (aoaoad = (a,). 

4. Conclusion 

We have tried to show the flexibility of a method, previously used to find upper bounds 
on T, for ferromagnetic pair interaction systems, when being applied to systems with 
ferromagnetic many-body interactions. Our emphasis has been more on the method 
than pushing for the best numerical results. We have therefore restricted our calcula- 
tions to ones involving rather a small number of terms. With this number of terms 
our bounds are comparable to the best bounds known to us for these systems. 

It is clear from the earlier sections that one of the characteristics of the method is 
that a sequence of improving bounds can be achieved. This can be done in two ways. 
First one can go to higher generations of deleted bonds which means then considering 
more and more terms. Second, it can be done by not using the very crudest lower 
bound of B 2 1 for all the various B generated, which is equivalent to bounding all 
the thermal averages in the B by zero. Rather we can easily obtain non-zero lower 
bounds for these thermal averages by calculating them in small systems as was done 
for the case of the pair interaction systems. We know from the GKS inequalities the 
bigger these small systems the better the bound. 

Finally, since throughout the paper we have, when possible, compared our results 
with the Horiguchi and Morita results we bring out one final point for comparison. 
Their method bounds the many-body system by a system with only pair interactions. 
Then use is made of the available results for this pair interaction system. The better 
the results for the pair interaction system the better the results for the many-body 
interaction system. In the case of the two-dimensional square lattice one has the exact 
solution for T, but for other lattice systems, especially three-dimensional systems, 
similar results will not in general be available. The method presented in this paper is 
self-contained in the sense that no results on a critical temperature established elsewhere 
are used here. 
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